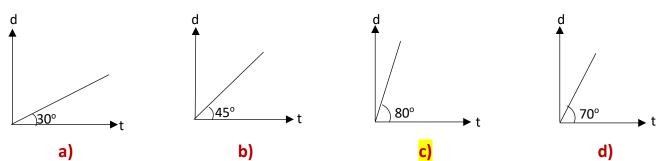


Physics Area		Sec (1)	Mrs. Marwa Ahmed
	-	mass 5 kg to change its v	velocity from 7 m/s to 3 m/s in
an interval of 2 s is	••••••		
a) 10 N	b) 5 N	c) – 2 N	<mark>d) – 10 N</mark>
24) If a force acting its motion	on a body is double	d while its mass is decre	eased to half, acceleration of
a) decreases to i	ts half	b) increases to	the double
<mark>c) increases four</mark>		d) decrease to i	
-	-	er of mass 1500 kg are m eavier vehicle will be	the force acting on less
a) equal to	b) half	c) twice	<mark>d) three times</mark>
			d) $\frac{1}{4}$
the least value of t	he acceleration by w	hich the body will move	e?(cancelled)
3 N 5 N	3 N		
a)	b)	c)	d)
with acceleration o		body of mass 5 kg to mo agnitude of the friction c) 9 N	
a) 6 N	D) 8 N	C) 9 N	d) 39 N
	-	noving along horizontal e acceleration of motion	plane when affected by force n equals?
a) 6 m/s²	<mark>b) 2 m/s²</mark>	c) – 3 m/s²	d) – 4 m/s²
		2	

Physics Area 30) The weight of a	a body is 120 N or	Sec (1) n Earth, so its weight on th	Mrs. Marwa Ahmed e weight on the moon = N
			1
		the gravity on the moon –	$\frac{1}{6}$ the acceleration due to the
gravity on the Eart		1	N 400
<mark>a) 20</mark>	b) 60	c) 100	d) 120
-	-	otion from rest with a unifon n/s, thus after from startin	orm acceleration, so its ag motion, its momentum will
<mark>a) 8 x 10³</mark>	b) 16 x 10 ³	c) $4\sqrt{2} \times 10^{3}$	d) 8 $\sqrt{2}$ x 10 ³
of a body that is af on the body is a) absent b) in the same dire c) in the opposite o d) perpendicular to 31) A car of mass 2	fected by a force ection of motion direction of motio o the direction of 240 kg starts its m	motion otion from rest on a straig	
friction force betw	een the car and t	he surface of Earth =	
a) 150 N	b) 200 N	c) 300 N	<mark>d) 450 N</mark>
32) In the opposite be a) greater than 2 c) less than 2 N	-	brce on the bigger mass will b) equal to 2 N d) no correct answer	$\begin{array}{c c} & 3 \\ \hline 5 & 1 \\ \end{array} \\ \begin{array}{c} 3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
surface. If an exter	nal force (F) acts		ass are placed on a smooth $m \rightarrow F_{T} \rightarrow 2m \rightarrow F$
a) zero	b) 2 F	c) F	d) F
			~ ′ <u>3</u>
		3	
		-	

►m(kg)

20 40


d) 9 N

60 80

35) The following graphs illustrate a group of objects that have the same mass and they are all drawn to the same scale, so the graph that express the object with highest momentum is......

325

1300

36) A boy pushes a 10 kg crate across the floor with a constant force of 10 N against a force of friction. The box accelerates at rate of 0.1 m/s². What if the magnitude of the opposing frictional force?.....

c) 5 N

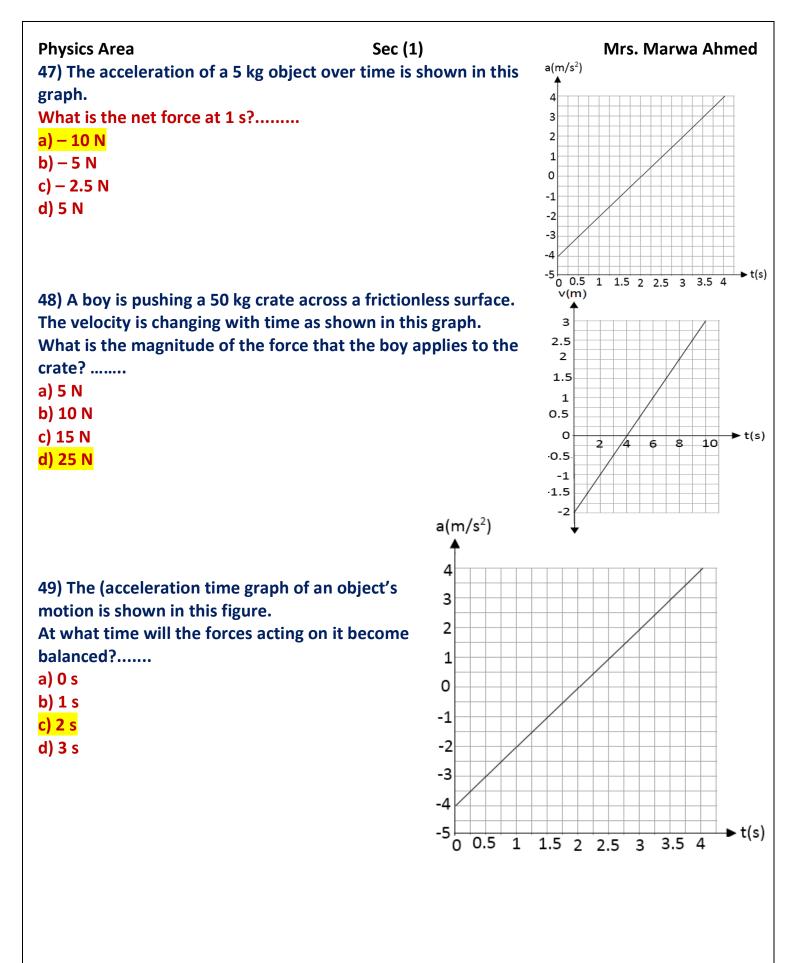
a) 0 b) 1 N

65

65

c)

d)


37) A jet flies horizontally where its engines produce a total of 20000 N of forward thrust. If the jet's mass is 50000 kg and it accelerates at 0.3 m/s². So what is the magnitude of the air resistance against which the jet flies?.....

a) 1000 N	b) 3000 N	<mark>c) 5000 N</mark>	d) 10000 N
-----------	-----------	------------------------	------------

38) A car with mass of 1000 kg travels at 30 m/s. the driver applies his brakes for a uniform deceleration and comes to complete stop in 60 m. assuming that forward motion is positive, what is the net force acting on the car?.....

a) 7500 N	b) 5000 N	c) — 5000	<mark>d) – 75000</mark>
-----------	-----------	-----------	-------------------------

velocity?		ball starts from rest, so v	
a) 5 m/s	•	c) 20 m/s	d) 30 m/s
	-	oss a horizontal floor wi	
			elerates from rest to final
a) 1 s	b) 2 s	ke to get that velocity? . c) 3 s	<mark>d) 4 s</mark>
aj 13	0/23		u/ + 3
41) A rocket goes fro	om rest to 9.6 km/s in	8 minutes. The rocket's	mass is 8 x 10 ⁶ kg.
Assuming a constant	t acceleration, what is	the net force acting on	the rocket?
a) 1.6 x 10⁵ N	b) 9.6 x 10⁵ N	c) 9.6 x 10 ⁶ N	<mark>d) 160 x 10⁶ N</mark>
•			the brakes suddenly and
			car uniformly decelerates
		ravel during the braking	-
	b) 50 m	c) 100 m	d) 200 m
a) 2 m	b) 50 m	-,	•
•	•	•	uniformly from rest to 10
13) At the very begin	nning of the dash. A 7	•	uniformly from rest to 10
3) At the very begin n/s in 0.5 s as she m	nning of the dash. A 7	0 kg runner accelerates	uniformly from rest to 10
13) At the very begin m/s in 0.5 s as she m runner?	nning of the dash. A 7	0 kg runner accelerates lirection. What is the ne	uniformly from rest to 10
I3) At the very begin n/s in 0.5 s as she m runner? a) – 7000 N	nning of the dash. A 70 noves in the positive d b) – 1400 N	0 kg runner accelerates (lirection. What is the ne c) 0 N	uniformly from rest to 10 t force acting upon the
 At the very begin At the very begin n/s in 0.5 s as she month unner? a) – 7000 N Ank of followin 	nning of the dash. A 70 noves in the positive d b) – 1400 N g scenarios from the s	0 kg runner accelerates (lirection. What is the ne c) 0 N	uniformly from rest to 10 t force acting upon the d) 1400 N
 i3) At the very begin in 0.5 s as she month ia 10.5 s as she month	nning of the dash. A 76 noves in the positive d b) – 1400 N g scenarios from the s ied to a mass M	0 kg runner accelerates (lirection. What is the ne c) 0 N	uniformly from rest to 10 t force acting upon the d) 1400 N
 At the very begin At the very begin n/s in 0.5 s as she munner? a) - 7000 N A) Rank of followin Net force F appl Net force Z F ap Net force F appl 	nning of the dash. A 76 noves in the positive d b) – 1400 N g scenarios from the s ied to a mass M plied to a mass M ied to a mass 2 M	0 kg runner accelerates (lirection. What is the ne c) 0 N smallest acceleration to	uniformly from rest to 10 t force acting upon the d) 1400 N
 At the very begin At the very begin n/s in 0.5 s as she munner? a) - 7000 N A) Rank of followin Net force F appl Net force Z F ap Net force F appl 	nning of the dash. A 76 noves in the positive d b) – 1400 N g scenarios from the s ied to a mass M plied to a mass M	0 kg runner accelerates (lirection. What is the ne c) 0 N smallest acceleration to	uniformly from rest to 10 t force acting upon the d) 1400 N
 I3) At the very begin IA the v	nning of the dash. A 76 noves in the positive d b) – 1400 N g scenarios from the s ied to a mass M plied to a mass M ied to a mass 2 M	0 kg runner accelerates i lirection. What is the ne c) 0 N smallest acceleration to	uniformly from rest to 10 t force acting upon the d) 1400 N
 At the very begin At the very begin n/s in 0.5 s as she munner? a) - 7000 N A) Rank of followin At the very begin A Net force F appl Net force 2 F appl 	hning of the dash. A 76 hoves in the positive d b) – 1400 N g scenarios from the s ied to a mass M plied to a mass 2 M plied to a mass 2 M plied to a mass 2 M b) i > ii > iii > iv	0 kg runner accelerates (lirection. What is the ne c) 0 N smallest acceleration to c) iii > iv = i > ii	uniformly from rest to 10 t force acting upon the d) 1400 N the greatest acceleration: d) iv > ii > iii > i
 At the very begin At the very begin n/s in 0.5 s as she munner? a) - 7000 N A) Rank of followin Net force F appl Net force 2 F ap a) ii > i= iv > iii 5) Two static object 	hning of the dash. A 70 hoves in the positive d b) – 1400 N g scenarios from the s ied to a mass M plied to a mass 2 M plied to a mass 2 M plied to a mass 2 M b) i > ii > iii > iv ts of mass 2 kg, 18 kg	0 kg runner accelerates (lirection. What is the ne c) 0 N smallest acceleration to c) iii > iv = i > ii are affected by two equ	uniformly from rest to 10 t force acting upon the d) 1400 N the greatest acceleration: d) iv > ii > iii > i al forces. They moved in
 ii) At the very begin iii 0.5 s as she more that in the very begin iii) - 7000 N iiii) Rank of followin iiii: Net force F appli iii: Net force F appli iii: Net force 2 F appli ii: Net force 2 F appli i: Net force 2 F appli i: Net force 2 F appli i: Net force	hning of the dash. A 70 hoves in the positive d b) – 1400 N g scenarios from the s ied to a mass M plied to a mass 2 M plied to a mass 2 M plied to a mass 2 M b) i > ii > iii > iv ts of mass 2 kg, 18 kg	0 kg runner accelerates (lirection. What is the ne c) 0 N smallest acceleration to c) iii > iv = i > ii are affected by two equ	uniformly from rest to 10 t force acting upon the d) 1400 N the greatest acceleration: d) iv > ii > iii > i
(43) At the very begin m/s in 0.5 s as she m runner? a) – 7000 N 44) Rank of followin i. Net force F appl i. Net force 2 F ap i. Net force 2 F ap a) ii > i= iv > iii 45) Two static objects straight line and cov $\frac{V_1}{V_2}$	hning of the dash. A 70 hoves in the positive d b) – 1400 N g scenarios from the s ied to a mass M plied to a mass 2 M plied to a mass 2 M plied to a mass 2 M b) i > ii > iii > iv ts of mass 2 kg, 18 kg	0 kg runner accelerates (lirection. What is the ne c) 0 N smallest acceleration to c) iii > iv = i > ii are affected by two equ	uniformly from rest to 10 t force acting upon the d) 1400 N the greatest acceleration: d) iv > ii > iii > i al forces. They moved in
(3) At the very begin (3) At the very begin (13) At the very begin (14) Sank of sass here (14) Rank of followin (14) Rank of followin (14) Rank of followin (14) Rank of followin (14) Rank of followin (15) Rank of followin (15) Two static object (15) Two stat	hning of the dash. A 70 hoves in the positive d b) – 1400 N g scenarios from the s ied to a mass M plied to a mass 2 M plied to a mass 2 M plied to a mass 2 M b) i > ii > iii > iv ts of mass 2 kg, 18 kg	0 kg runner accelerates (lirection. What is the ne c) 0 N smallest acceleration to c) iii > iv = i > ii are affected by two equ cement, so the ratio betw	uniformly from rest to 10 t force acting upon the d) 1400 N the greatest acceleration: d) iv > ii > iii > i al forces. They moved in ween their final velocities
 ii > i= iv > iii ii > i= iv > iii ii > i= and conject 	hning of the dash. A 70 hoves in the positive d b) – 1400 N g scenarios from the s ied to a mass M plied to a mass 2 M plied to a mass 2 M plied to a mass 2 M b) i > ii > iii > iv ts of mass 2 kg, 18 kg	0 kg runner accelerates (lirection. What is the ne c) 0 N smallest acceleration to c) iii > iv = i > ii are affected by two equ	uniformly from rest to 10 t force acting upon the d) 1400 N the greatest acceleration: d) iv > ii > iii > i al forces. They moved in
(43) At the very begin m/s in 0.5 s as she model runner? a) – 7000 N 44) Rank of followin i. Net force F appl i. Net force 2 F ap i. Net force 2 F ap a) ii > i= iv > iii 45) Two static objects straight line and cov $\frac{71}{2}$	hning of the dash. A 70 hoves in the positive d b) – 1400 N g scenarios from the s ied to a mass M plied to a mass 2 M plied to a mass 2 M plied to a mass 2 M b) i > ii > iii > iv ts of mass 2 kg, 18 kg	0 kg runner accelerates (lirection. What is the ne c) 0 N smallest acceleration to c) iii > iv = i > ii are affected by two equ cement, so the ratio betw	uniformly from rest to 10 t force acting upon the d) 1400 N the greatest acceleration: d) iv > ii > iii > i al forces. They moved in ween their final velocities d) $\frac{1}{9}$
(43) At the very begin m/s in 0.5 s as she model runner? a) - 7000 N (44) Rank of followin i. Net force F appl i. Net force 2 F ap i. Net force 2 F ap a) ii > i= iv > iii (45) Two static object straight line and cov $\frac{\sqrt{1}}{2} = \frac{\sqrt{2}}{1}$	nning of the dash. A 76 hoves in the positive d b) – 1400 N g scenarios from the s ied to a mass M plied to a mass 2 M plied to a mass 2 M plied to a mass 2 M b) i > ii > iii > iv ts of mass 2 kg, 18 kg ered the same displace b) $\frac{3}{1}$	0 kg runner accelerates (lirection. What is the ne c) 0 N smallest acceleration to c) iii > iv = i > ii are affected by two equ cement, so the ratio betw	uniformly from rest to 10 t force acting upon the d) 1400 N the greatest acceleration: d) iv > ii > iii > i al forces. They moved in ween their final velocities d) $\frac{1}{9}$
43) At the very begin m/s in 0.5 s as she model runner? a) - 7000 N 44) Rank of followin i. Net force F apple i. Net force 2 F apple i. Net force 2 F apple a) ii > i= iv > iii 45) Two static objects straight line and cov $\frac{71}{1} = \frac{72}{1}$ a) $\frac{9}{1}$ 46) Two objects on a	nning of the dash. A 70 hoves in the positive d b) – 1400 N g scenarios from the s ied to a mass M plied to a mass 2 M plied to a mass 2 M b) i > ii > iii > iv ts of mass 2 kg, 18 kg ered the same displace b) $\frac{3}{1}$	0 kg runner accelerates i lirection. What is the nei- c) 0 N smallest acceleration to c) iii > iv = i > ii are affected by two equi- cement, so the ratio betw c) $\frac{1}{3}$ are connected with a rop	uniformly from rest to 10 t force acting upon the d) 1400 N the greatest acceleration: d) iv > ii > iii > i al forces. They moved in ween their final velocities d) $\frac{1}{9}$ e F $\frac{1}{6 \text{ kg}}$
43) At the very begin m/s in 0.5 s as she m runner? a) – 7000 N 44) Rank of followin i. Net force F appl i. Net force 2 F ap i. Net force 2 F ap a) ii > i= iv > iii 45) Two static object straight line and cov $\frac{v_1}{1} = \frac{v_2}{1}$ 46) Two objects on a of negligible mass. A	nning of the dash. A 70 hoves in the positive d b) – 1400 N g scenarios from the s ied to a mass M plied to a mass 2 M plied to a mass 2 M plied to a mass 2 M b) i > ii > iii > iv ts of mass 2 kg, 18 kg ered the same displace b) $\frac{3}{1}$	0 kg runner accelerates i lirection. What is the nei- c) 0 N smallest acceleration to c) iii > iv = i > ii are affected by two equi- cement, so the ratio betw c) $\frac{1}{3}$	uniformly from rest to 10 t force acting upon the d) 1400 N the greatest acceleration: d) iv > ii > iii > i al forces. They moved in ween their final velocities d) $\frac{1}{9}$ e F $\frac{1}{6 \text{ kg}}$
43) At the very begin m/s in 0.5 s as she m runner? a) - 7000 N 44) Rank of followin i. Net force F appl i. Net force 2 F ap i. Net force 2 F ap a) ii > i= iv > iii 45) Two static objects straight line and cov $\frac{v_1}{1} = \frac{v_2}{1}$ 46) Two objects on a	nning of the dash. A 70 hoves in the positive d b) – 1400 N g scenarios from the s ied to a mass M plied to a mass 2 M plied to a mass 2 M plied to a mass 2 M b) i > ii > iii > iv ts of mass 2 kg, 18 kg ered the same displace b) $\frac{3}{1}$	0 kg runner accelerates i lirection. What is the nei- c) 0 N smallest acceleration to c) iii > iv = i > ii are affected by two equi- cement, so the ratio betw c) $\frac{1}{3}$ are connected with a rop	uniformly from rest to 10 t force acting upon the d) 1400 N the greatest acceleration: d) iv > ii > iii > i al forces. They moved in ween their final velocities d) $\frac{1}{9}$ e F $\frac{1}{6 \text{ kg}}$

Physics Area		Sec (1)	Mrs. Marwa Ahmed
50) if the kinet	ic energy of the two boo	lies a and b is the same	and the mass of body a is four
times the mass	s of body b, so the ratio	n between their linear r	nomentums ($rac{P_a}{P_a}$) (cancelled)
a) $\frac{1}{2}$	b) $\frac{2}{1}$	c) $\frac{1}{4}$	d) $\frac{4}{1}$
	s x , y have the same ma (cancelled)	ss if (KE) _x = 4(KE) _Y ,So t	ne linear momentum of body
a) P _y second; Ess	b) 2 P _y ay questions	c) 4 P _y	d) 8 P _y

1) Explain Newton's first law is a special case of Newton's second law Newton's second law states that the net force that acts on a body is directly proportional to the body's acceleration (F α a) and when the acting net force vanishes ($\Sigma F = 0$), also the acceleration vanishes according to this law. which means that the body keeps its state of rest or motion with certain constant velocity which is the same as what stated in Newton's first law, hence the first law of Newton is a special case of the second law of Newton in which the resultant force equals zero.

write down the mathematical relation and mention what the slope equals:

Mathematical relation	slope
a) F =ma	$\frac{F}{m} = a$
b) F =ma	$\frac{F}{a} = m$
c) F =ma	am=F
d) W=mg	$\frac{W}{m} = g$
e) F=ma	$\frac{a}{F} = \frac{1}{m}$
f) P =mv	$\frac{P}{m} = V$
g) P=mv	$\frac{P}{V} = m$

Physics Area Sec (1) Mrs. Marwa Ahmed 3) $m_A < m_B < m_C$ $A_A < B_B < C_C$ 4) a) The resultant force will be zero, So the rope will not move to any direction. b) The rope will move to the direction of the greater force 5) W_E=W_m $\frac{\mathbf{m}_{\mathrm{E}}}{=} \frac{\mathbf{m}_{\mathrm{m}}}{=}$ $\frac{\frac{g_E}{m_E}}{g_E} = \frac{\frac{m_m}{m_m}}{\frac{1}{6}g_E}$ $m_E = 6 m_m$ I prefer to have a piece of gold on the Earth 6) to prevent inertia and decrease the time impact. 7) $\mathbf{F} = \mathbf{ma} = \frac{\Delta P}{\Delta t} = \frac{\Delta m \mathbf{v}}{\Delta t}$ $\Delta P \alpha \Delta t$ $\frac{P_1}{P_2} = \frac{t_1}{t_2}$ $\frac{P}{P_2} = \frac{t}{2t}$ $P_2 = 2P$

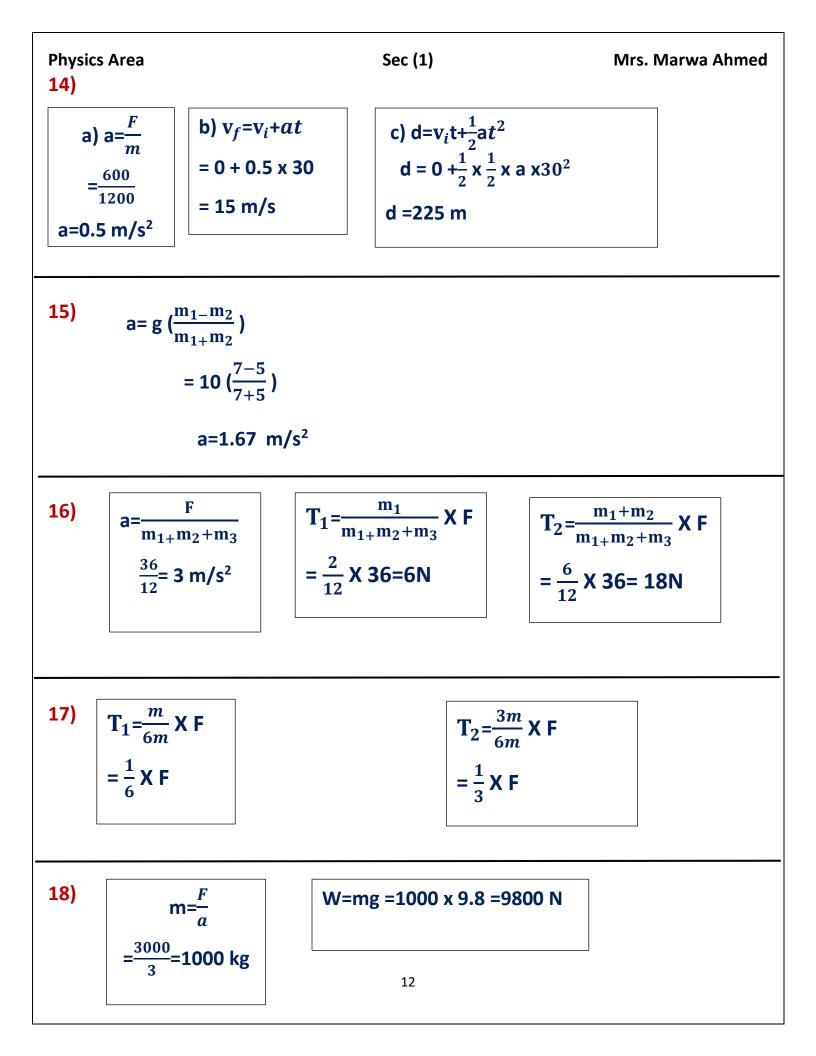
Physics Area Sec (1) Mrs. Marwa Ahmed 8) Car (y) moves with larger acceleration because it has the smaller mass and according to the relation $\frac{F}{m} = a$, the acceleration is inversely proportional to the mass at constant net force. **Third: problems** 1) $P_1 = P_2$ $mv_1 = mv_2$ $V_{2} = \frac{m_1 V_1}{m_2} = \frac{5x20}{15} = 6.67 \text{ m/s}$ 2) $a = \frac{V_{f-}V_i}{t}$ $\frac{(108-54)x\frac{5}{18}}{10} = a = 1.5 \ m/s^2$ F =10 x1.5 =15 N 3) F=ma =4x 2=8N $d=v_it+\frac{1}{2}at^2$ $10 = 0 + \frac{1}{2} \times 2 \times t^2$ $t^2 = 16$ t=4 sec 4) a) F=ma b) $a = \frac{v_{f-}v_{i}}{t} = \frac{8-0}{6}$ c) d= $v_i t + \frac{1}{2} a t^2$ 50=0+ $\frac{1}{2}$ x a x5² =30 x3 =90 N =1.333333m/s² F=ma=1.333 x 30=40 N a=4m/s² F=ma=4 x 30=120 N 9

Physics AreaSec (1)Mrs. Marwa Ahmed5)a)
$$a = \frac{v_f - v_i}{t}$$

 $-5 = \frac{0 - 20}{t}$
t =4 secb) $v_f^2 = v_i^2 + 2ad$
 $0^2 = 20^2 + 2x - 5xd$
 $d = 40 m$ c) friction force in the
opposite direction
F=ma=-5 x 600
 $= -3000 N$

Calculate the resultant force and the acceleration of each mass in the following figures:

	1	2
F	400-150=250N	Fx=200-200=0 Fy=800-770=30
а	$a = \frac{F}{m} = \frac{250}{50} = 5m/s^2$	$a = \frac{F}{m} = \frac{30}{20} = -1.5 \text{m/s}^2$


$$a = \frac{F}{m} = \frac{100}{10} = 10 \text{ m/s}^{2}$$
7)
$$v_{f}^{2} = v_{i}^{2} + 2ad$$

$$20^{2} = 10^{2} + 2x10xd \qquad d=15 \text{ m}$$
8) a) P=mv=1200 x 20=24000 Kg.m/s
b) $a = \frac{v_{f} - v_{i}}{t} = a = \frac{0 - 20}{5} = a = -4 \text{ m/s}^{2}$

$$v_{f} = v_{i} + at = 20 - x4 \text{ x3} = 8 \text{ m/s}$$
P=mv=1200 x 8=9600 Kg.m/s
c) F=ma=1200 x -4 = -2800 N
9)
b) V=72 \text{ km/h} = 20 \text{ m/s} = -2800 \text{ N}
$$F = \frac{\Delta p}{\Delta t} = -2 \text{ m/s} = a + 10^{3} = \frac{\Delta p}{2}$$

$$\Delta p = -10^{4} \text{ kg.m/s}$$
10
a = 15 m
b = 10 m/s^{2} = -2 m/s = -4 m/s^{2} = -2 m/s
b = 10 m/s = 10 m/s = -2 m/s

Physics Area 10) $\frac{a_1}{a_2} = \frac{m_2}{m_1}$ $\frac{a_1}{20} = \frac{1}{5}$ $a_1 = \frac{20}{5} = 4 \text{ m/s}^2$	Sec (1)	Mrs. Marwa Ahmed
11) $a_1 = 8 \text{ m/s}^2$ $a_2 = \frac{48-0}{3} = 16 \text{ m/s}^2$	$\frac{a_1}{a_2} = \frac{m_2}{m_1}$ $\frac{8}{16} = \frac{m_2}{5}$ $m_2 = \frac{40}{16} = 2.5 \ kg$	
12) v_i =20 m/s (المسألة زودها) v_f^2 = v_i^2 +2 ad	(مش مكتوبة في	
$0^2 = 20^2 + 2xax40$ a= -5 m/s ²		
$\mathbf{F}_{f} =$	$ma = 8 \ x - 5 = -40 \ N$	
13) $F_m = F_a - F_f$ ma = 300 - 50 500 a=250 a=0.5 m/s ² $F_m = 500 x \frac{1}{2}$ =20 N		

Physics Area	Sec (1)	Mrs. Marwa Ahmed
1.5/	x 9.8 =490 N nass doesn't	
W=mg =225 20) m=50 kg ma	x 9.8 =490 N ss doesn't change	
21) $m = \frac{F}{a}$ $= \frac{100}{5}$ m=20 kg	$v_f^2 = v_i^2 + 2ad$ $20^2 = 10^2 + 2xa \times 30$ $a = 5 \text{ m/s}^2$	W=mg =20 x 10 =200 N
22) (m=24 kg عدل $a=\frac{v_{f}-v_{i}}{t}$ $a=\frac{40-25}{2}$ F=ma=7.5 x 24 =14	a= 7.5 m/s ²	
23) W=mg 400=m x 10 m=40 kg	$a = \frac{F}{m}$ $= \frac{200}{40}$ $a = 5 \text{ m/s}^2$ $v_f = v_f$ $= 5 + f_f$ $= 20 \text{ m}$	5 x 3
25) $v_f^2 = v_i^2 + 2ad$ $9^2 = 165^2 + 2xa x^2$ $a = -4.07 \times 10^{-5} \text{ m}$		Ν
	13	

Physics Area Sec (1) Mrs. Marwa Ahmed
26)
$$F = \frac{1}{2} w$$

 $ma = \frac{1}{2} mg$
 $a = \frac{1}{2} g = 5 m/s^2$ $v_{f} = 0 + 5 \times 2$
 $= 10 m/s$ $d = 0 + \frac{1}{2} \times 5 \times a \times 2^2$
 $d = 0 + \frac{1}{2} \times 5 \times a \times 2^2$
 $d = 0 + \frac{1}{2} \times 5 \times a \times 2^2$
 $d = 10 m$
27) cancelled
27) $a = \frac{v_{f} - v_{f}}{t}$
 $a \frac{1}{t}$ $\frac{1}{a_2} = \frac{m_2}{m_1} = \frac{t_2}{t_1} = \frac{5}{3}$
 $\frac{t_1}{t_2} = \frac{3}{5}$
28,29) cancelled
30) a) Velocity is constant
 $a = 2ero$
 $F_T \cos 60 = F_f$
 $F_T = \frac{200}{\cos 60} = 400 \text{ N}$ $F_T = 2400 \text{ N}$
31) a) 30 m/s
b) AB (positive acceleration) BC (zero acceleration)
 $\overline{Acceleration \ a = \frac{30 - 0}{40} = 0.75}$ $\overline{Zero \ a = \frac{0 - 30}{20} = -1.5}$
Force F=ma=80x0.75=60 N Zero F=ma=80x-1.5=-120 N